

MicroFLOW Manual

Operating instructions

MicroFLOW is available
at Micro-Hybrid-Shop

 microhybrid.com/shop

Micro-Hybrid Electronic GmbH
Heinrich-Hertz-Str. 8
07629 Hermsdorf | Germany

T +49 36601 592-0
contact@microhybrid.com
www.microhybrid.com

Table of contents

1. Instructions of use	4
2. Loss of warranty / liability / legal information	4
3. General description MicroFLOW	5
3.1 General technical data	5
3.2 Device descriptpion	6
4. Electrical connections	7
4.1 Connectors and their configuration	7
4.2 Basisboard compact-IR V2.0.X	8
4.3 Description of status byte	9
4.4 Description of device ID	10
5. External zero input signal	11
6. Digital communication protocol via RS232 (ASCII Mode)	12-16

1. Instruction of use

- Dry sample gas with less than 5 °C dew point – via electric cooler, Nafion™ hose or similar.
- Reliable particle filtration < 1 µm, with membrane filter or similar – must be checked and maintained regularly.
- Stable sample gas flow between 0.1 ... 1.5 l/min – pump without pressure fluctuation and no variable back pressure
- Regular zero check and adjustment – we recommend the use of a standard N₂ cylinder (or other inert gas) and a solenoid valve for SW controlled automatic zero adjustment. For this purpose, our AZF module can be used as an accessory. (See chapter autozero function)
- Regular end point adjustment requires appropriate test gas
- Before each calibration, let the sensor run for at least 30 minutes under stable ambient conditions in operation
- Stable sensor temperature without contact to attachments or other materials – in the best case the environment or the sensor itself is tempered to ~ 40 – 50 °C, here also our optionally available heating controller can be used

2. Loss of warranty / liability / legal information

CAUTION!

Opening the sensor as well as tampering with or damaging the device will void the warranty!

Loss of warranty is also threatened using aggressive chemicals, contamination and liquids that have penetrated the device and by non-observance of the instructions in this module and communication description!

Micro-Hybrid Electronic GmbH accepts no liability for consequential damage or damage to property or personal injury caused by failure to observe the module and communication description.

3. General description MicroFlow

The MicroFlow is based on the selective absorption of infrared radiation in the range from 2 μm to 12 μm . In this spectral range it is possible to measure a lot of important gases like carbon dioxide (CO₂), carbon monoxide (CO), carbon hydrogens (CH₄, C₂H₆, C₃H₈, C₄H₁₀, ...) and sulphur hexafluoride (SF₆). We use broadband radiation sources (thermal emitters). This radiation immediately reaches the sample cell in which specific spectral ranges are absorbed from the broadband spectrum of the radiation source.

The measuring detector which contains at least 2 separate channels is located at the end of the sample cell. In the simplest case the measuring channel has an interference filter placed in front of the detector. Afterwards a detector measures the specific radiation absorption. The reference detector has an interference filter in front of the detector, too but with a spectral transmission range (approx. 4 μm) where no absorption takes place.

The evaluation electronics use the two signals to calculate the gas concentration in the sample cell. Alternatively, a detector with several measuring channels can be placed at the end of the sample cell, so that 3 components can be detected simultaneously.

3.1 General technical data

MicroFlow	
Power supply	9 – 30 VDC
Supply current	110 mA @ 9 V, 33 mA @ 30 V
Inrush current	220 mA
Power consumption	< 1 W
Warm up time	< 15 min
PC requirements	Windows 7 – 10, RS232, CAN bus adapter (PEAK etc.)
Ambient conditions	Temperature: 5 – 45 ° C, rel. humidity: < 95 % not condensing
Gas connection / house	Viton or teflon flexible tube (4 mm / 6 mm)

Table 1: General technical data of the MicroFlow

The technical data are general, please refer for the right setting to the data sheet of your module.

3.2 Device description

In Figure 1 the entire assembly of the MicroFlow is shown. The gas input is designated at the side of the source unit, and the gas output at the other side (detector unit). The fittings are suitable for 4 mm (inner diameter) and 6 mm (outer diameter) flexible tubes (viton or teflon). The optical bench and the basisboard are assembled on a support plate (Aluminium). The dimensions of the support mounting brackets are shown in the figures below. The 4 threaded pins are suitable for M4 nuts.

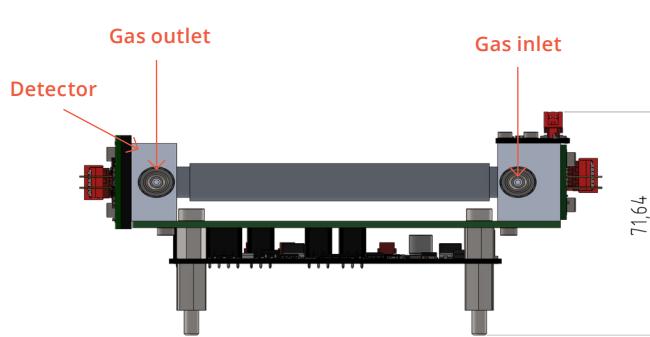


Figure 1: MicroFlow with 100 mm cell

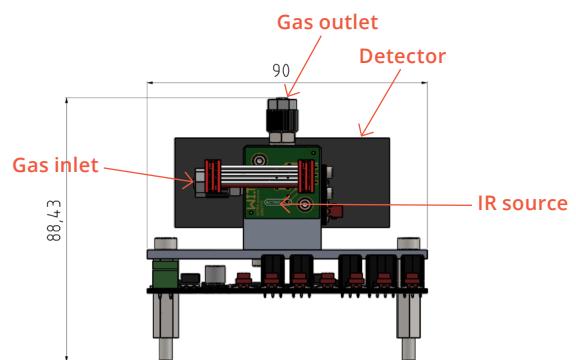


Figure 2: MicroFLOW with 2 mm cell

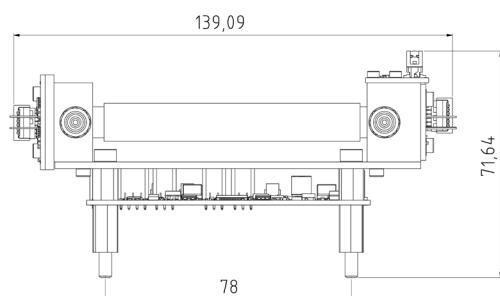


Figure 3: Dimensions front view of MicroFLOW with 100 mm cell

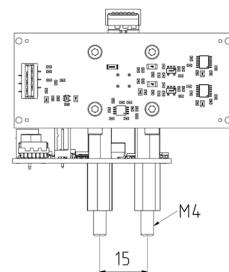


Figure 4: Dimensions side view of MicroFLOW with 100 mm cell

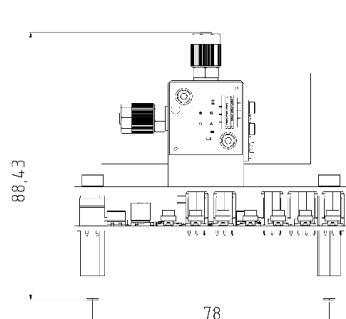


Figure 5: Dimensions front view of MicroFLOW with 2 mm cell

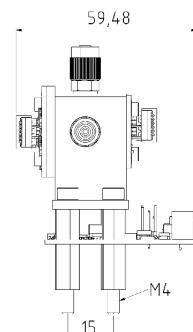


Figure 6: Dimensions side view of MicroFLOW with 2 mm cell

4. Electrical connections

In this chapter you will find an overview of all main electronics.

4.1 Connectors and their configurations

In the following subchapter you will find all connectors for supply and communication with our modules.

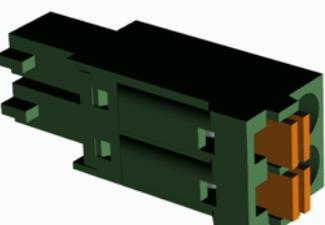

Power Basisboard IR-compact V2.0.X		Pin configuration	
Connector	Manufacturer	Article no.	Specification
1			
Pin	Signal		
1	VCC+		
2	GND-		
Connector	Manufacturer	Article no.	Specification
V2.0.X.	Würth electronic	691304100002	3,5 mm; 2 pol

Table 2: Power supply configuration Basisboard IR-compact V2.0.x.

RS232 Basisboard IR-compact V2.0.X.		Pin configuration	
Connector	Manufacturer	Article no.	Specification
1			
Pin	Signal		
1	R x D (Receive data output)		
2	T x D (Transmit data input)		
3	GND (Device ground supply)		
Connector	Manufacturer	Article no.	Specification
RS232	Würth electronic	661003152222	2,54 mm; 3 pol

Table 3: RS232 configuration on Basisboard IR-compact V2.0.x.

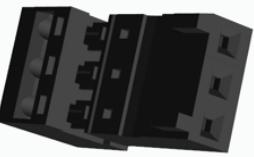
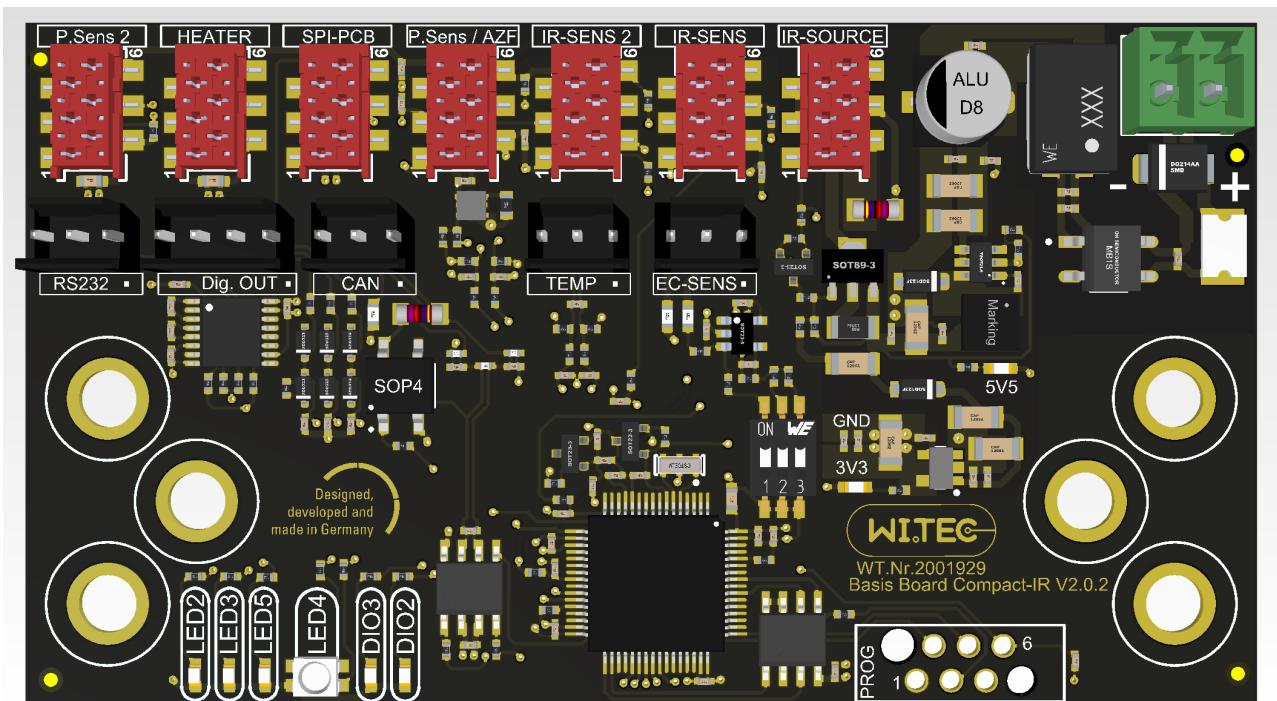


CAN-Bus Basisboard IR-compact V2.0.X.		Pin configuration	
Connector	Manufacturer	Article no.	Specification
1			
Pin	Signal		
1	CAN-L		
2	CAN-H		
3	GND (Device ground supply)		
Connector	Manufacturer	Article no.	Specification
CAN-Bus	Würth electronic	661003152222	2,54 mm; 3 pol

Table 4: CAN-bus configuration on Basisboard IR-compact V2.0.X.

4.2 Basisboard Compact-IR V2.0.X.

The labels of the connectors are directly on the Basisboard IR-compact V2.0.X. In the table you can find the function of each connector.

Connector	Signal	Function	
RS232	Communication RS232	RX (1), TX (2), GND (3) – 2.54 mm, 3 pol	
Dig. OUT	Digital input/output	Pin	Signal
		1	DIO1 (digital input for zero trigger) Pull the pin to GND (Pin 4) for min. 4 sec to set to Zero value for each gas channel
		2	DIO2 (digital output/input)
		3	DIO3 (digital output for autozero module or external trigger output)
		4	GND 2.54 mm, 4 pol
CAN	Communication CAN-bus	CAN-L (1), CAN-H (2), GND (3) – 2.54 mm, 3pol	
TEMP	Input external pt1000 2wire	Pt1000_1 (1) , GND (2), Pt1000_2 (3)	
EC-SENS	Input electrochemical sensor	Vsignal (1), GND (2), GND_filter (3)	
PROG	Progr. interface (firmware-update)		
P.sens2	2. pressure sensor	Optional second input pressure-sensor / humidity sensor	
Heater	Heater control	Not implemented	
SPI-PCB	Analog voltage PCB	Opt. analog voltage 0 – 10 V (0 – 2 V/ 0 – 5 V)	

Connector	Signal	Function
P.sens/AZF	Pressure-/humidity sensor/AZF	Input pressure/humidity sensor and control of Autozero function (AZF_VV / VP via DIO3)
IR-SENS 2	Input ^{2nd} DUAL detector or QUAD (UV)	I2C Input (I2C1)
IR-SENS	Input DUAL detector or QUAD (IR)	I2C Input (I2C2)
IR-SOURCE	Output for IR Lamp	$V_{\text{lamp}} + (3 / 5)$, $V_{\text{lamp}} - (4 / 6)$, control (1), GND (2)
Green	Power 24 V	9 – 30 Vdc Input - 3,5 mm; 2 pol
Status LEDs		LED 2: signal for system tick (1 Hz) LED 3: signal for I2C sensor communication LED 5: signal for RS232 communication LED 4: Status LED (red/green) DIO 3: AZF on/off DIO 2: not in use

Table 5: Description of pin assignment of Basisboard IR-compact V2.0.X.

4.3 Description of status byte

IR detected	NA	NA	NA	IR level error	NA	NA	NA	Status code	Status LED		
Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	bin	hex	dez	
0	1	1	1	1	1	1	1	1111111	7F	127	red
1	1	1	1	1	1	1	1	11111111	FF	255	red
1	1	1	1	0	1	1	1	11110111	F7	247	green

Table 6: Description status byte IR

For example:

CO₂ sensor

- IR lamp is not detected, and signal level is under signal threshold 50% intensity → Status byte code: 0x7F
- IR lamp is detected, and signal level is under signal threshold 50% intensity → Status byte code: 0xFF
- IR lamp is detected, and signal level is above signal threshold 50% intensity → Status byte code: 0xF7

4.4 Description of device ID

Device ID (0xCH1MT, CH2MT, CH3MT, CH4MT, CH1GT, CH2GT, CH3GT, CH4GT)

Index	Measurement type (MT)	Gas type (GT)
0	none	none
2	IR	CO ₂
3		CO
8		CH ₄
e		SF ₆

Table 7: Description device ID

For example:

Device ID: 0 x 20002000

Gas channel 1: IR sensor with CO₂ detector

Gas channel 2: none

Gas channel 3: none

Gas channel 4: none

Device ID: 0 x 20008000

Gas channel 1: IR sensor with CH₄ detector

Gas channel 2: none

Gas channel 3: none

Gas channel 4: none

5. External zero input signal

It is possible to set the zero point of each gas channel without any digital interface or software efforts. The basic PCB up version 1.8.2 is capable for external zero input trigger.

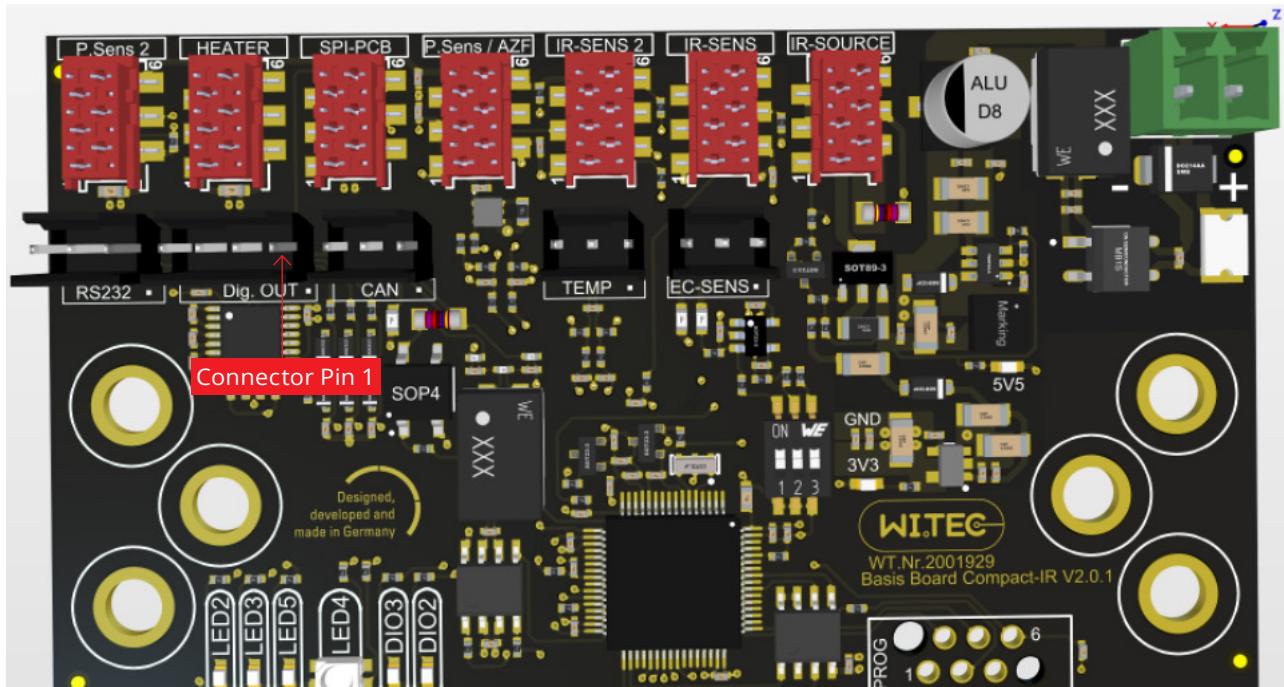
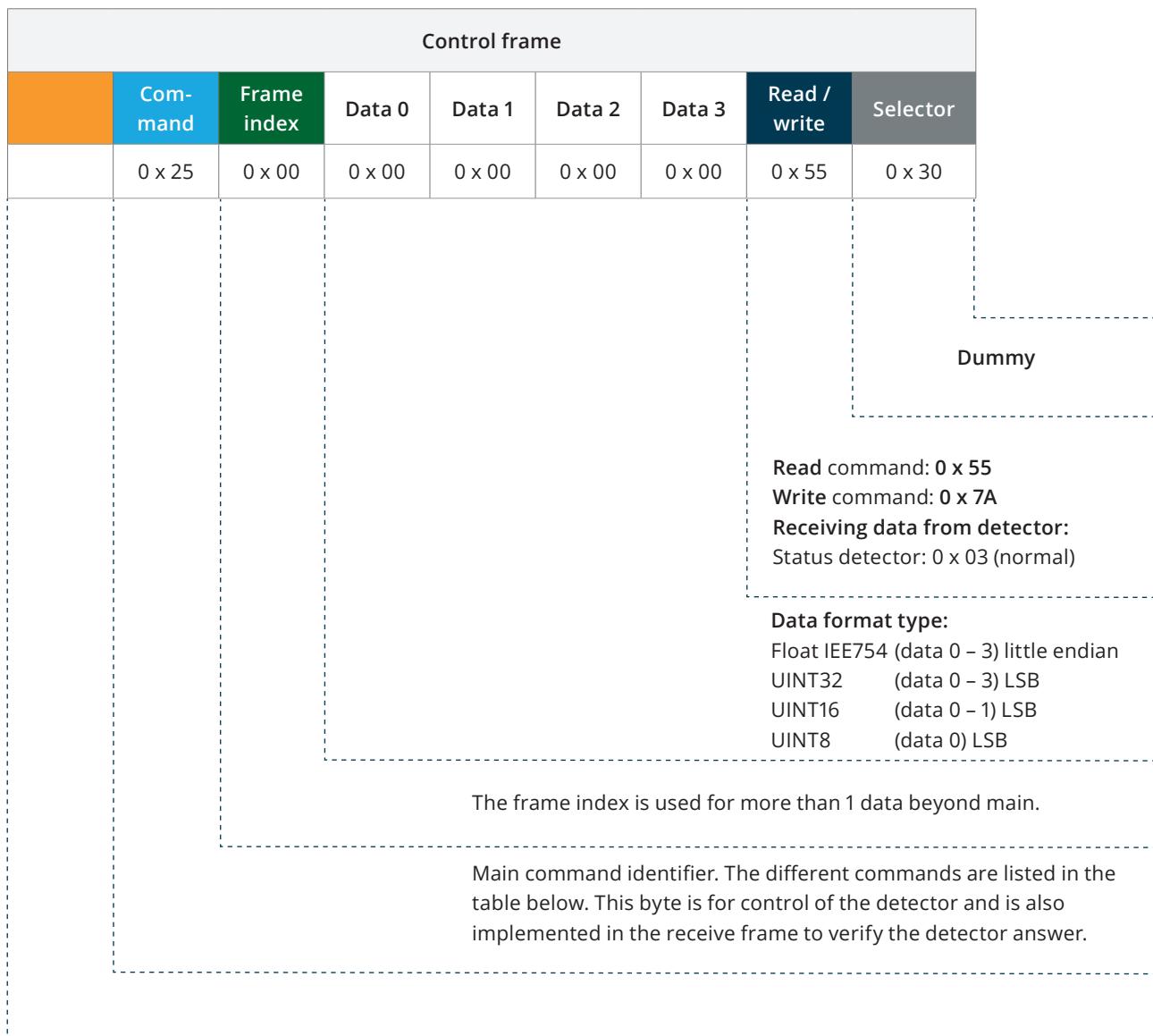


Figure 7: Basisboard IR-compact V2.0.X.

Pin	Signal
1	Pull the pin to GND (pin 4) for min. 4 sec to set the zero value for each gas channel
2	DIO2 (digital output)
3	DIO3 (digital output AZF control)
4	GND


Table 8: external I/O Pin configuration

6. Digital communication protocol via RS232 (ASCII mode)

Settings

Baudrate	115200 Baud
Databits	8
Stopbit	1
Parity	None
Data format (inout)	UINTx – LSB first Float – IEE754 Data format: little endian
Data format (output)	ASCII string with max. 15 bytes incl. CR/LF

Protocol basic (to detector)

Protocol basic

The detector answer with an ASCII String followed by a CR and LF code for separation. For example, please note the diagram below. The incoming data from the detector can be displayed with a simple terminal program (Hterm ect.) or with the more comfortable MARS light. Download software on our website: www.microhybrid.com/downloads

Read concentration CH ₁	to detector	0 x 17	0 x 00	0 x 55	0 x 00					
	from detector	ASCII data (ppm [Vol.-%]) + (CR + LF)								

Read temperature CH ₁	to detector	0 x 17	0 x 00	0 x 55	0 x 00					
	from detector	ASCII data (°C) + (CR + LF)								

CR – carriage return (0 x 0D)

LF – line feed (0 x 0A)

Command list**Normal operating mode**

These commands are important for the main function of the detector.

Option	Description	Cmd	Frame index	Format type	Unit	Access
	Concentration CH ₁ – CH ₂	0 x 17	0 – 1	FLOAT	ppm (Vol.-%)	Read
	Temperature CH ₁ (IR detector)	0 x 18	0	FLOAT	°C	Read
	Temperature CH ₂ (ext. pt 1000)	0 x 1F	0	FLOAT	°C	Read
	Temperature CH ₄ (μController board)	0 x 20	0	FLOAT	°C	Read
	Set zero calibration (all channel) zeropoint stored*	0 x 11 or (0 x 08)	0	BOOL		
	Set zero calibration channel 1 zeropoint stored*	0 x 11	1	BOOL		Write
	Set zero calibration channel 2 zeropoint stored*	0 x 11	2	BOOL		Write
	Set span calibration CH ₁ – CH ₂	0 x 60	0 – 1	FLOAT	ppm (Vol.-%)	Write
	Read / write span calibration factor CH ₁ – CH ₂	0 x 63	0 – 1	FLOAT	1,00 Factory setting	RW
	Pressure sensor out	0 x 19	0	FLOAT	mbar	Read
	Set IR source on	0 x 29	0	BOOL		Write
	Set IR source off	0 x 30	0	BOOL		Write

Sensor raw signals

Description	Cmd	Frame index	Format type	Unit	Access	Range
ADC raw CH ₁ reference	0 x 14	0	FLOAT	V	Read	0 – 1,25 V
ADC raw CH ₁ sensor	0 x 15	0	FLOAT	V	Read	0 – 1,25 V
ADC raw CH ₂ reference	0 x10	0	FLOAT	V	Read	0 – 1,25 V
ADC raw CH ₂ sensor	0 x13	0	FLOAT	V	Read	0 – 1,25 V
Modulation CH ₁	0 x 16	0	FLOAT		Read	0 – 1
Modulation CH ₂	0 x 16	1	FLOAT		Read	0 – 1

Setup and sensor information

IR lamp frequency	0 x 23	0	UINT16	Hz	RW	0 – 10
Filter depth of modulation CH ₁ , CH ₂	0 x 35	2	UINT8		RW	0 – 255
Filter depth of concentration CH ₁ , CH ₂	0 x 35	3	UINT8		RW	0 – 255
Serial number	0 x 40	0	UINT16		Read	
Device ID	0 x 62	0	UINT32		Read	See table p. 10
Hardware revision	0 x 41	0	UINT16		Read	
Software revision	0 x 0b	0	UINT16		Read	
Operating hours	0 x 43	0	UINT16		Read	
Measurement range CH ₁	0 x 47	2	FLOAT	ppm (Vol.-%)	Read	
Measurement range CH ₂	0 x 47	3	FLOAT	ppm (Vol.-%)	Read	
Measurement unit CH ₁	0 x 61	2	UINT16		Read	0 – ppm 1 – Vol-%
Measurement unit CH ₂	0 x 61	3	UINT16		Read	
Source power IR LAMP	0 x 49	2	UINT8	%	Read	0 – 100 %
Status byte	0 x 50	0	UINT8			See table p. 9
Software system reset	0 x 04	0	BOOL		Write	

Example for transmitting the endpoint calibration for channel 1 – CO₂

Concentration test gas = 6050.00 ppm (certified gas bottle)
 Measured concentration with sensor = 6021.00 ppm

Set span calibration CH31	to detector	0 x 17	0 x 00	0 x 55	0 x 00					
	from detector	ASCII string: 1.00482 + (CR + LF)								

The detector sends the calculated compensation factor back. The compensation factor in this example is 1.00482. This factor is stored in the internal EEPROM.

Now the sensor is calibrated with the new span factor.

Calculation of the direct absorption for a dual beam process:

$$\text{Modulation} = \frac{\frac{\text{ADC Raw CH1ref}}{\text{ADC Raw CH1ref@zero}} - \frac{\text{ADC Raw CH1mess}}{\text{ADC Raw CH1mess@zero}}}{\frac{\text{ADC Raw CH1ref}}{\text{ADC Raw CH1ref@zero}}}$$